您的位置:首页>新闻资讯
SiC MOSFET驱动电压尖峰分析与抑制(下)
发布人:瞻芯电子 发布时间:2024/12/11 点击数:354

【背景】高频、高速开关是碳化硅(SiC) MOSFET的重要优势之一,这能让系统效率显著提升,但也会在寄生电感和电容上产生更大的振荡,从而在驱动电压上产生更大的尖峰。

驱动电压尖峰会对系统有诸多不良影响。首先,驱动电压尖峰若超出SiC MOSFET的驱动电压安全范围,可能引发器件误开关,甚至损坏器件。其次,尖峰电压可能产生电磁干扰,影响系统EMC指标。最后,驱动电压尖峰带来的高频震荡还会导致电流波形不稳定,从而影响系统的性能和稳定。

因此,设计可靠的驱动电路来抑制的驱动电压尖峰,成为发挥SiC MOSFET优势特性的关键课题。本系列上篇讲解过:“驱动电压尖峰复现与分析”,本篇主讲第二部分:“驱动电压尖峰的抑制方法”。

【正文】

瞻芯电子采用经典的双脉冲测试方法,来复现分析SiC MOSFET的开关过程中驱动电压尖峰,以便采取对策。在双脉冲测试中,Q1Q2为瞻芯电子1200V 80mΩ SiC MOSFETIV1Q12080T3/T4),下管Q2始终保持关断,上管Q1则进行开关动作。当上管Q1开通时电流路径为红色实线,当上管Q1关断时电流路径为红色虚线,如下图1

1:双脉冲测试电路及过程

 

抑制尖峰对策一:并联二极管钳位

利用二极管的单向导通特性,在MOSFET栅极和源极并联二极管,来钳位因®米勒效应和di/dt在源极的震荡导致的驱动电压负尖峰。如下图2所示,当上管Q1关闭时,高dv/dt导致器件米勒电容放电,同时源极产生自感电动势,这些导致Vgs产生负尖峰,当负尖峰电压超过二极管阈值电压时,二极管将导通以消除Vgs的负尖峰。

2MOSFET并联二极管

在下列测试波形图3中,Vgs负压尖峰几乎消除,但是在0V关断的条件下,因寄生电感释放能量,导致正尖峰增大到3.9V,存在误开通风险。

所以二极管钳位可以有效消除负尖峰,但是正尖峰风险增大,因此推荐配合使用驱动负压偏置,以避免MOSFET误开通。

30V驱动,且并联二极管

 

40V驱动,但无钳位

 

抑制尖峰对策二:并联电容


-3.5V关断下管Q2,且不加抑制尖峰对策时,驱动电路如下图5。当首次关闭上管Q1时的波形如图6,当第二次上管Q1时的波形如图7,都出现较大正负尖峰:

5:不加抑制时,上管Q1关闭的电路

 

  图6:不加抑制,上管Q1关闭的波形                                      图7:不加抑制,上管Q1开通的波形

 

若利用电容的稳压和滤波特性,在MOSFET栅极和源极并联合适的电容,可吸收和平滑驱动电压正负尖峰,如图8

8:并联电容时,上管Q1关闭

 当上管Q1关闭后,在Vds降低到0V后,Vgs负压尖峰不再下拉,如下图9;当上管Q1开通时,Vgs正尖峰也被限制得较低,如下图10

 

                                   图9:并联电容时,关闭上管Q1                                                    10:并联电容时,开通上管Q1

 如果在系统中有高频震荡,还建议在电容处串联阻尼电阻,会有更好的尖峰震荡抑制效果,电路如下图11:

11MOSFET并联电容+电阻

在并联电容上,串联电阻的驱动波形如下图1213

   图12:并联电容+电阻时,关闭上管                                     图13:并联电容+电阻时,开通上管                    

虽然串联电阻后对主尖峰的吸收效果略有减弱,但对于TO247-3封装的器件,考虑源极引脚导致管芯上的Vgs电压尖峰和持续震荡,所以加吸收电阻有更好的阻尼效果。

 

抑制尖峰对策三:采用开尔文源极驱动 

因为TO247-4封装器件具有开尔文源极引脚,可与功率回路源极分开,让源极电感无法影响驱动电压,因而能有效抑制源极管脚寄生电感引起的驱动电压尖峰,其电路示意图如下图14

14:采用TO247-4源极引脚驱动

 下列的波形图中,采用-3.5V驱动电压关断的SiC MOSFETTO247-4封装器件因具备开尔文源极引脚,对比TO247-3器件,其驱动电压尖峰被显著抑制,其中负压尖峰由-7.4V减小到-6.9V,正压尖峰由2.58V降低到-2.99V,如下图15-16

15:有开尔文源极驱动的波形

16:无开尔文源极引脚驱动的波形


如果SiC MOSFET选用TO247-4封装,同时并联电容和电阻,还能进一步吸收驱动电压尖峰,抑制持续震荡,总体效果更好,如下图17-18

17:采用TO247-4+RC吸收

18:采用开尔文源极引脚驱动+RC吸收的波形

 综合对比上述3种抑制对策,效果最佳的方式为采用具有开尔文源极的TO247-4封装器件,并合理搭配吸收电容和电阻。

 

米勒钳位应用对策

为应对SiC MOSFET较低的阈值电压(Vth),瞻芯电子开发了SiC专业·比邻驱动芯片TM IVCR1401,其内部集成负压驱动与退保和保护功能。在下列驱动电路中,加入了2个钳位MOSFET,如下图19

19SiC专用驱动芯片IVCR1401+米勒钳位管

 

当主MOSFET关断时,钳位管导通,以短接驱动电阻Rg,等效于米勒钳位,能显著抑制驱动电压主尖峰,如下图20

20:对比有无米勒钳位管的波形

 

总  结

1驱动电压尖峰的主要原因2点:

  • dv/dt时的米勒电效应;
  • di/dt在源极引脚寄生电感上产生的震荡。

2、抑制驱动电压尖峰的最佳方式为:采用开尔文源极引脚驱动,并搭配合适的电容和电阻,以吸收尖峰和震荡;

3、对于TO247-3封装,不建议用米勒钳位,最多用电容串联电阻的弱下拉;

4、对于TO247-4封装或驱动回路源极漏感小的电路,可用各种米勒钳位对策;

5、建议驱动路径尽量靠近器件引脚根部,规避长引脚的寄生电感。